Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 7(12): 2168-78, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23109358

RESUMO

The endonucleolytic activity of human apurinic/apyrimidinic endonuclease (AP endo, Ape1) is a major factor in maintaining the integrity of the genome. Conversely, as an undesired effect, Ape1 overexpression has been linked to resistance to radio- and chemotherapeutic treatments in several human tumors. Inhibition of Ape1 using siRNA or the expression of a dominant negative form of the protein has been shown to sensitize cells to DNA-damaging agents, including various chemotherapeutic agents. Therefore, inhibition of the enzymatic activity of Ape1 might result in a potent antitumor therapy. A number of small molecules have been described as Ape1 inhibitors; however, those compounds are in the early stages of development. Herein we report the identification of new compounds as potential Ape1 inhibitors through a docking-based virtual screening technique. Some of the compounds identified have in vitro activities in the low-to-medium micromolar range. Interaction of these compounds with the Ape1 protein was observed by mass spectrometry. These molecules also potentiate the cytotoxicity of the chemotherapeutic agent methyl methanesulfonate in fibrosarcoma cells. This study demonstrates the power of docking and virtual screening techniques as initial steps in the design of new drugs, and opens the door to the development of a new generation of Ape1 inhibitors.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico
2.
Biochem J ; 442(2): 323-34, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22132725

RESUMO

Synaptic glycine levels are controlled by GLYTs (glycine transporters). GLYT1 is the main regulator of synaptic glycine concentrations and catalyses Na+-Cl--glycine co-transport with a 2:1:1 stoichiometry. In contrast, neuronal GLYT2 supplies glycine to the presynaptic terminal with a 3:1:1 stoichiometry. We subjected homology models of GLYT1 and GLYT2 to molecular dynamics simulations in the presence of Na+. Using molecular interaction potential maps and in silico mutagenesis, we identified a conserved region in the GLYT2 external vestibule likely to be involved in Na+ interactions. Replacement of Asp471 in this region reduced Na+ affinity and Na+ co-operativity of transport, an effect not produced in the homologous position (Asp295) in GLYT1. Unlike the GLYT1-Asp295 mutation, this Asp471 mutant increased sodium leakage and non-stoichiometric uncoupled ion movements through GLYT2, as determined by simultaneously measuring current and [3H]glycine accumulation. The homologous Asp471 and Asp295 positions exhibited distinct cation-sensitive external accessibility, and they were involved in Na+ and Li+-induced conformational changes. Although these two cations had opposite effects on GLYT1, they had comparable effects on accessibility in GLYT2, explaining the inhibitory and stimulatory responses to lithium exhibited by the two transporters. On the basis of these findings, we propose a role for Asp471 in controlling cation access to GLYT2 Na+ sites, ion coupling during transport and the subsequent conformational changes.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Substituição de Aminoácidos , Animais , Ácido Aspártico/química , Células COS , Chlorocebus aethiops , Sequência Conservada , Fenômenos Eletrofisiológicos , Feminino , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Técnicas In Vitro , Transporte de Íons/efeitos dos fármacos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oócitos/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Compostos de Espiro/farmacologia , Xenopus laevis
3.
J Neurochem ; 118(2): 195-204, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21574997

RESUMO

Glycine synaptic levels are controlled by glycine transporters (GLYTs) catalyzing Na(+)/Cl(-)/glycine cotransport. GLYT1 displays a 2:1 :1 stoichiometry and is the main regulator of extracellular glycine concentrations. The neuronal GLYT2, with higher sodium coupling (3:1 :1), supplies glycine to the pre-synaptic terminal to refill synaptic vesicles. In this work, using structural homology modelling and molecular dynamics simulations of GLYTs, we predict the conservation of the two sodium sites present in the template (leucine transporter from Aquifex aeolicus), and confirm its use by mutagenesis and functional analysis. GLYTs Na1 and Na2 sites show differential cation selectivity, as inferred from the action of lithium, a non-transport-supporting ion, on Na(+)-site mutants. GLYTs lithium responses were unchanged in Na1-site mutants, but abolished or inverted in mutants of Na2 site, which binds lithium in the presence of low sodium concentrations and therefore, controls lithium responses. Here, we report, for the first time, that lithium exerts opposite actions on GLYTs isoforms. Glycine transport by GLYT1 is inhibited by lithium whereas GLYT2 transport is stimulated, and this effect is more evident at increased glycine concentrations. In contrast to GLYT1, high and low affinity lithium-binding processes were detected in GLYT2.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Lítio/fisiologia , Animais , Células COS , Chlorocebus aethiops , Glicina/metabolismo , Lítio/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
4.
Ann N Y Acad Sci ; 1210: 17-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20973795

RESUMO

Despite its high incidence as the second most common tumor in males worldwide, primary prostate cancer has been associated with few recurrent chromosomal gains and deletions that are consistent across various studies. Few studies have explored how chromosomal alterations are coupled to abnormal gene expression. Here, we review the major genomic aberrations associated with prostate cancer and describe how detailed transcriptional and computational analyses allowed us to discover a recurrent chromosomal gain in a small region on chromosome 17. Fluorescent in situ hybridization confirmed the presence of a copy number gain in 17q25.3 in tumor-associated preneoplastic lesions of the prostate, 65% of primary tumors, and metastatic samples. These results suggest the involvement of this gain at all steps of prostate cancer progression.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 17/genética , Mutação , Neoplasias da Próstata/genética , Mapeamento Cromossômico , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Neoplasias da Próstata/patologia , Transcrição Gênica
5.
PLoS One ; 5(6): e11403, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20613989

RESUMO

BACKGROUND: Several pathways that control cell survival under stress, namely RNF8-dependent DNA damage recognition and repair, PCNA-dependent DNA damage tolerance and activation of NF-kappaB by extrinsic signals, are regulated by the tagging of key proteins with lysine 63-based polyubiquitylated chains, catalyzed by the conserved ubiquitin conjugating heterodimeric enzyme Ubc13-Uev. METHODOLOGY/PRINCIPAL FINDINGS: By applying a selection based on in vivo protein-protein interaction assays of compounds from a combinatorial chemical library followed by virtual screening, we have developed small molecules that efficiently antagonize the Ubc13-Uev1 protein-protein interaction, inhibiting the enzymatic activity of the heterodimer. In mammalian cells, they inhibit lysine 63-type polyubiquitylation of PCNA, inhibit activation of NF-kappaB by TNF-alpha and sensitize tumor cells to chemotherapeutic agents. One of these compounds significantly inhibited invasiveness, clonogenicity and tumor growth of prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: This is the first development of pharmacological inhibitors of non-canonical polyubiquitylation that show that these compounds produce selective biological effects with potential therapeutic applications.


Assuntos
Proteínas/metabolismo , Ubiquitinação , Animais , Catálise , Células HeLa , Humanos , Camundongos , Modelos Animais , Modelos Moleculares , NF-kappa B/metabolismo , Ligação Proteica
6.
Sci Signal ; 2(83): ra43, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19671929

RESUMO

The CD3epsilon subunit of the T cell receptor (TCR) complex undergoes a conformational change upon ligand binding that is thought to be important for the activation of T cells. To study this process, we built a molecular dynamics model of the transmission of the conformational change within the ectodomains of CD3. The model showed that the CD3 dimers underwent a stiffening effect that was funneled to the base of the CD3epsilon subunit. Mutation of two relevant amino acid residues blocked transmission of the conformational change and the differentiation and activation of T cells. Furthermore, this inhibition occurred even in the presence of excess endogenous CD3epsilon subunits. These results emphasize the importance of the conformational change in CD3epsilon for the activation of T cells and suggest the existence of unforeseen cooperativity between TCR complexes.


Assuntos
Complexo CD3/metabolismo , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/química , Animais , Complexo CD3/química , Complexo CD3/genética , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo
7.
PLoS Comput Biol ; 5(3): e1000331, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19325884

RESUMO

Structural classifications of proteins assume the existence of the fold, which is an intrinsic equivalence class of protein domains. Here, we test in which conditions such an equivalence class is compatible with objective similarity measures. We base our analysis on the transitive property of the equivalence relationship, requiring that similarity of A with B and B with C implies that A and C are also similar. Divergent gene evolution leads us to expect that the transitive property should approximately hold. However, if protein domains are a combination of recurrent short polypeptide fragments, as proposed by several authors, then similarity of partial fragments may violate the transitive property, favouring the continuous view of the protein structure space. We propose a measure to quantify the violations of the transitive property when a clustering algorithm joins elements into clusters, and we find out that such violations present a well defined and detectable cross-over point, from an approximately transitive regime at high structure similarity to a regime with large transitivity violations and large differences in length at low similarity. We argue that protein structure space is discrete and hierarchic classification is justified up to this cross-over point, whereas at lower similarities the structure space is continuous and it should be represented as a network. We have tested the qualitative behaviour of this measure, varying all the choices involved in the automatic classification procedure, i.e., domain decomposition, alignment algorithm, similarity score, and clustering algorithm, and we have found out that this behaviour is quite robust. The final classification depends on the chosen algorithms. We used the values of the clustering coefficient and the transitivity violations to select the optimal choices among those that we tested. Interestingly, this criterion also favours the agreement between automatic and expert classifications. As a domain set, we have selected a consensus set of 2,890 domains decomposed very similarly in SCOP and CATH. As an alignment algorithm, we used a global version of MAMMOTH developed in our group, which is both rapid and accurate. As a similarity measure, we used the size-normalized contact overlap, and as a clustering algorithm, we used average linkage. The resulting automatic classification at the cross-over point was more consistent than expert ones with respect to the structure similarity measure, with 86% of the clusters corresponding to subsets of either SCOP or CATH superfamilies and fewer than 5% containing domains in distinct folds according to both SCOP and CATH. Almost 15% of SCOP superfamilies and 10% of CATH superfamilies were split, consistent with the notion of fold change in protein evolution. These results were qualitatively robust for all choices that we tested, although we did not try to use alignment algorithms developed by other groups. Folds defined in SCOP and CATH would be completely joined in the regime of large transitivity violations where clustering is more arbitrary. Consistently, the agreement between SCOP and CATH at fold level was lower than their agreement with the automatic classification obtained using as a clustering algorithm, respectively, average linkage (for SCOP) or single linkage (for CATH). The networks representing significant evolutionary and structural relationships between clusters beyond the cross-over point may allow us to perform evolutionary, structural, or functional analyses beyond the limits of classification schemes. These networks and the underlying clusters are available at http://ub.cbm.uam.es/research/ProtNet.php.


Assuntos
Algoritmos , Inteligência Artificial , Modelos Químicos , Reconhecimento Automatizado de Padrão/métodos , Proteínas/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Análise por Conglomerados , Simulação por Computador , Dados de Sequência Molecular
8.
J Comput Aided Mol Des ; 23(3): 171-84, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18941902

RESUMO

A novel software (VSDMIP) for the virtual screening (VS) of chemical libraries integrated within a MySQL relational database is presented. Two main features make VSDMIP clearly distinguishable from other existing computational tools: (i) its database, which stores not only ligand information but also the results from every step in the VS process, and (ii) its modular and pluggable architecture, which allows customization of the VS stages (such as the programs used for conformer generation or docking), through the definition of a detailed workflow employing user-configurable XML files. VSDMIP, therefore, facilitates the storage and retrieval of VS results, easily adapts to the specific requirements of each method and tool used in the experiments, and allows the comparison of different VS methodologies. To validate the usefulness of VSDMIP as an automated tool for carrying out VS several experiments were run on six protein targets (acetylcholinesterase, cyclin-dependent kinase 2, coagulation factor Xa, estrogen receptor alpha, p38 MAP kinase, and neuraminidase) using nine binary (actives/inactive) test sets. The performance of several VS configurations was evaluated by means of enrichment factors and receiver operating characteristic plots.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Desenho de Fármacos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas , Bases de Dados de Proteínas , Ligantes , Ligação Proteica , Proteínas/química , Solventes/metabolismo
9.
Adv Exp Med Biol ; 640: 103-12, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19065788

RESUMO

The failure to identify changes in the crystal structure of the T-cell antigen receptor (TCR) alpha/beta ectodomains beyond the ligand-binding complementarity-determining region loops is most probably responsible for conformational changes having been relegated to a second plane as a mechanism of signal transduction. However, there is strong biochemical and spectroscopic evidence that the cytoplasmic tails of the tcr and the B-cell antigen receptor undergo conformational changes upon stimulation. This suggests that in the context of the whole TCR complex, including both the TCRalpha/beta ectodomains and the complete CD3 subunits with their transmembrane and cytoplasmic tails, the conformational change has to be transmitted from the ectodomains to the cytoplasmic rails upon ligand binding. While the mechanism of transmission and the importance of conformational changes in T- and B-cell activation are still being elucidated, there are already functional correlates that establish a link between full T-cell activation and this conformational change.


Assuntos
Modelos Imunológicos , Conformação Proteica , Animais , Humanos , Ligantes , Receptores Imunológicos/química , Receptores Imunológicos/imunologia
10.
BMC Cancer ; 8: 315, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18973659

RESUMO

BACKGROUND: Transcriptional profiling of prostate cancer (PC) has unveiled new markers of neoplasia and allowed insights into mechanisms underlying this disease. Genomewide analyses have also identified new chromosomal abnormalities associated with PC. The combination of both classes of data for the same sample cohort might provide better criteria for identifying relevant factors involved in neoplasia. Here we describe transcriptional signatures identifying distinct normal and tumoral prostate tissue compartments, and the inference and demonstration of a new, highly recurrent copy number gain on chromosome 17q25.3. METHODS: We have applied transcriptional profiling to tumoral and non-tumoral prostate samples with relatively homogeneous epithelial representations as well as pure stromal tissue from peripheral prostate and cultured cell lines, followed by quantitative RT-PCR validations and immunohistochemical analysis. In addition, we have performed in silico colocalization analysis of co-regulated genes and validation by fluorescent in situ hybridization (FISH). RESULTS: The transcriptomic analysis has allowed us to identify signatures corresponding to non-tumoral luminal and tumoral epithelium, basal epithelial cells, and prostate stromal tissue. In addition, in silico analysis of co-regulated expression of physically linked genes has allowed us to predict the occurrence of a copy number gain at chromosomal region 17q25.3. This computational inference was validated by fluorescent in situ hybridization, which showed gains in this region in over 65% of primary and metastatic tumoral samples. CONCLUSION: Our approach permits to directly link gene copy number variations with transcript co-regulation in association with neoplastic states. Therefore, transcriptomic studies of carefully selected samples can unveil new diagnostic markers and transcriptional signatures highly specific of PC, and lead to the discovery of novel genomic abnormalities that may provide additional insights into the causes and mechanisms of prostate cancer.


Assuntos
Adenocarcinoma/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 17 , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Dosagem de Genes , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Hibridização de Ácido Nucleico , Neoplasias da Próstata/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
11.
Proteins ; 73(4): 872-88, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18536008

RESUMO

The complexity of protein structures calls for simplified representations of their topology. The simplest possible mathematical description of a protein structure is a one-dimensional profile representing, for instance, buriedness or secondary structure. This kind of representation has been introduced for studying the sequence to structure relationship, with applications to fold recognition. Here we define the effective connectivity profile (EC), a network theoretical profile that self-consistently represents the network structure of the protein contact matrix. The EC profile makes mathematically explicit the relationship between protein structure and protein sequence, because it allows predicting the average hydrophobicity profile (HP) and the distributions of amino acids at each site for families of homologous proteins sharing the same structure. In this sense, the EC provides an analytic solution to the statistical inverse folding problem, which consists in finding the statistical properties of the set of sequences compatible with a given structure. We tested these predictions with simulations of the structurally constrained neutral (SCN) model of protein evolution with structure conservation, for single- and multi-domain proteins, and for a wide range of mutation processes, the latter producing sequences with very different hydrophobicity profiles, finding that the EC-based predictions are accurate even when only one sequence of the family is known. The EC profile is very significantly correlated with the HP for sequence-structure pairs in the PDB as well. The EC profile generalizes the properties of previously introduced structural profiles to modular proteins such as multidomain chains, and its correlation with the sequence profile is substantially improved with respect to the previously defined profiles, particularly for long proteins. Furthermore, the EC profile has a dynamic interpretation, since the EC components are strongly inversely related with the temperature factors measured in X-ray experiments, meaning that positions with large EC component are more strongly constrained in their equilibrium dynamics. Last, the EC profile allows to define a natural measure of modularity that correlates with the number of domains composing the protein, suggesting its application for domain decomposition. Finally, we show that structurally similar proteins have similar EC profiles, so that the similarity between aligned EC profiles can be used as a structure similarity measure, a property that we have recently applied for protein structure alignment. The code for computing the EC profile is available upon request writing to ubastolla@cbm.uam.es, and the structural profiles discussed in this article can be downloaded from the SLOTH webserver http://www.fkp.tu-darmstadt.de/SLOTH/.


Assuntos
Proteínas/química , Sequência de Aminoácidos , Aminoácidos/química , Simulação por Computador , Sequência Conservada , Bases de Dados de Proteínas , Evolução Molecular , Interações Hidrofóbicas e Hidrofílicas , Temperatura
12.
J Chem Inf Model ; 48(4): 844-54, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18351730

RESUMO

The human DNA-repair O (6)-alkylguanine DNA alkyltransferase (MGMT or hAGT) protein protects DNA from environmental alkylating agents and also plays an important role in tumor resistance to chemotherapy treatment. Available inhibitors, based on pseudosubstrate analogs, have been shown to induce substantial bone marrow toxicity in vivo. These deficiencies and the important role of MGMT as a resistance mechanism in the treatment of some tumors with dismal prognosis like glioblastoma multiforme, the most common and lethal primary malignant brain tumor, are increasing the attention toward the development of improved MGMT inhibitors. Here, we report the identification for the first time of novel non-nucleosidic MGMT inhibitors by using docking and virtual screening techniques. The discovered compounds are shown to be active in both in vitro and in vivo cellular assays, with activities in the low to medium micromolar range. The chemical structures of these new compounds can be classified into two families according to their chemical architecture. The first family corresponds to quinolinone derivatives, while the second is formed by alkylphenyl-triazolo-pyrimidine derivatives. The predicted inhibitor protein interactions suggest that the inhibitor binding mode mimics the complex between the excised, flipped out damaged base and MGMT. This study opens the door to the development of a new generation of MGMT inhibitors.


Assuntos
Inibidores Enzimáticos/química , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares
13.
Proteins ; 71(1): 278-99, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17932940

RESUMO

We adopt a model of inverse folding in which folding stability results from the combination of the hydrophobic effect with local interactions responsible for secondary structure preferences. Site-specific amino acid distributions can be calculated analytically for this model. We determine optimal parameters for the local interactions by fitting the complete inverse folding model to the site-specific amino acid distributions found in the Protein Data Bank. This procedure reduces drastically the influence on the derived parameters of the preference of different secondary structures for buriedness, which affects local interaction parameters determined through the standard approach based on amino acid propensities. The quality of the fit is evaluated through the likelihood of the observed amino acid distributions given the model and the Bayesian Information Criterion, which indicate that the model with optimal local interaction parameters is strongly preferable to the model where local interaction parameters are determined through propensities. The optimal model yields a mean correlation coefficient r = 0.96 between observed and predicted amino acid distributions. The local interaction parameters are then tested in threading experiments, in combination with contact interactions, for their capacity to recognize the native structure and structures similar to the native against unrelated ones. In a challenging test, proteins structurally aligned with the Mammoth algorithm are scored with the effective free energy function. The native structure gets the highest stability score in 100% of the cases, a high recognition rate comparable to that achieved against easier decoys generated by gapless threading. We then examine proteins for which at least one highly similar template exists. In 61% of the cases, the structure with the highest stability score excluding the native belongs to the native fold, compared to 60% if we use local interaction parameters derived from the usual amino acid propensities and 52% if we use only contact interactions. A highly similar structure is present within the five best stability scores in 82%, 81%, and 76% of the cases, for local interactions determined through inverse folding, through propensity, and set to zero, respectively. These results indicate that local interactions improve substantially the performances of contact free energy functions in fold recognition, and that similar structures tend to get high stability scores, although they are often not high enough to discriminate them from unrelated structures. This work highlights the importance to apply more challenging tests, as the recognition of homologous structures, for testing stability scores for protein folding.


Assuntos
Estudos de Avaliação como Assunto , Modelos Moleculares , Dobramento de Proteína , Conformação Proteica
14.
Proteins ; 71(1): 175-88, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17985353

RESUMO

The structural refinement of protein models is a challenging problem in protein structure prediction (Moult et al., Proteins 2003;53(Suppl 6):334-339). Most attempts to refine comparative models lead to degradation rather than improvement in model quality, so most current comparative modeling procedures omit the refinement step. However, it has been shown that even in the absence of alignment errors and using optimal templates, methods based on a single template have intrinsic limitations, and that refinement is needed to improve model accuracy. It is thought that failure of current methods originates on one hand from the inaccuracy of the effective free energy functions adopted, which do not represent properly the energetic balance in the native state, and on the other hand from the difficulty to sample the high dimensional and rugged free energy landscape of protein folding, in the search for the global minimum. Here, we address this second issue. We define the evolutionary and vibrational armonics subspace (EVA), a reduced sampling subspace that consists of a combination of evolutionarily favored directions, defined by the principal components of the structural variation within a homologous family, plus topologically favored directions, derived from the low frequency normal modes of the vibrational dynamics, up to 50 dimensions. This subspace is accurate enough so that the cores of most proteins can be represented within 1 A accuracy, and reduced enough so that Replica Exchange Monte Carlo (Hukushima and Nemoto, J Phys Soc Jpn 1996;65:1604-1608; Hukushima et al., Int J Mod Phys C: Phys Comput 1996;7:337-344; Mitsutake et al., J Chem Phys 2003;118:6664-6675; Mitsutake et al., J Chem Phys 2003;118:6676-6688) (REMC) can be applied. REMC is one of the best sampling methods currently available, but its applicability is restricted to spaces of small dimensionality. We show that the combination of the EVA subspace and REMC can essentially solve the optimization problem for backbone atoms in the reduced sampling subspace, even for rather rugged free energy landscapes. Applications and limitations of this methodology are finally discussed.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química , Proteínas/genética , Homologia de Sequência de Aminoácidos , Bases de Dados de Proteínas , Evolução Molecular , Métodos , Conformação Proteica
15.
Nucleic Acids Res ; 35(21): 7109-17, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17940088

RESUMO

Eukaryotic ribosomal stalk protein L12 and its bacterial orthologue L11 play a central role on ribosomal conformational changes during translocation. Deletion of the two genes encoding L12 in Saccharomyces cerevisiae resulted in a very slow-growth phenotype. Gene RPL12B, but not the RPL12A, cloned in centromeric plasmids fully restored control protein level and the growth rate when expressed in a L12-deprived strain. The same strain has been transformed to express Escherichia coli protein EcL11 under the control of yeast RPL12B promoter. The bacterial protein has been found in similar amounts in washed ribosomes from the transformed yeast strain and from control E. coli cells, however, EcL11 was unable to restore the defective acidic protein stalk composition caused by the absence of ScL12 in the yeast ribosome. Protein EcL11 induced a 10% increase in L12-defective cell growth rate, although the in vitro polymerizing capacity of the EcL11-containing ribosomes is restored in a higher proportion, and, moreover, the particles became partially sensitive to the prokaryotic specific antibiotic thiostrepton. Molecular dynamic simulations using modelled complexes support the correct assembly of bacterial L11 into the yeast ribosome and confirm its direct implication of its CTD in the binding of thiostrepton to ribosomes.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/química , Proteínas Ribossômicas/química , Ribossomos/química , Saccharomyces cerevisiae/genética , Tioestreptona/farmacologia , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , RNA Ribossômico/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Protein Sci ; 16(10): 2278-86, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17766377

RESUMO

TA0095 is a 96-residue hypothetical protein from Thermoplasma acidophilum that exhibits no sequence similarity to any protein of known structure. Also, TA0095 is a member of the COG4004 orthologous group of unknown function found in Archaea bacteria. We determined its three-dimensional structure by NMR methods. The structure displays an alpha/beta two-layer sandwich architecture formed by three alpha-helices and five beta-strands following the order beta1-alpha1-beta2-beta3-beta4-beta5-alpha2-alpha3. Searches for structural homologs indicate that the TA0095 structure belongs to the TBP-like fold, constituting a novel superfamily characterized by an additional C-terminal helix. The TA0095 structure provides a fold common to the COG4004 proteins that will obviously belong to this new superfamily. Most hydrophobic residues conserved in the COG4004 proteins are buried in the structure determined herein, thus underlying their importance for structure stability. Considering that the TA0095 surface shows a large positively charged patch with a high degree of residue conservation within the COG4004 domain, the biological function of TA0095 and the rest of COG4004 proteins might occur through binding a negatively charged molecule. Like other TBP-like fold proteins, the COG4004 proteins might be DNA-binding proteins. The fact that TA0095 is shown to interact with large DNA fragments is in favor of this hypothesis, although nonspecific DNA binding cannot be ruled out.


Assuntos
Proteínas Arqueais/química , Proteínas de Ligação a DNA/química , Modelos Moleculares , Thermoplasma , Sequência de Aminoácidos , Proteínas Arqueais/classificação , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência
17.
Gut ; 56(9): 1266-74, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17452424

RESUMO

BACKGROUND: Tissue plasminogen activator (tPA) is the major activator of plasminogen in plasma. This serine protease is overexpressed by exocrine pancreas tumour cells, where it promotes tumour cell proliferation, growth, and invasion. Here we have explored the signalling pathways used by tPA to activate the proliferation of pancreatic cancer cells. METHODS: Transcriptional profiling on cDNA micro arrays was used to analyse the pattern of gene expression in response to tPA compared to the response to epidermal growth factor (EGF) and platelet derived growth factor (PDGF). Results were confirmed using different biochemical assays in which specific kinase inhibitors or RNA interference were used. RESULTS: Transcriptional profiling showed that tPA modulates the expression of a set of genes commonly regulated by EGF, but distinct from the major set of genes modulated by PDGF. This suggested that tPA and EGF share common signalling pathways, a conclusion supported by further experimental evidence. Firstly, we found that tPA induced a rapid and transient phosphorylation of the EGFR. Secondly, specific EGFR kinase inhibitors, but not PDGFR kinase inhibitors, abolished the tPA induced phosphorylation of the ERK1/2 kinases and cell proliferation. The mitogenic activity of tPA was also inhibited by siRNA depletion of EGFR, thus confirming the involvement of this receptor in tPA triggered signalling. Thirdly, we show that the signalling and mitogenic effects of tPA require its proteolytic activity, the activity of the metalloprotease-9 and active hb-EGF. CONCLUSION: Our results suggest that tPA induces proliferation by triggering a proteolytic cascade that sequentially activates plasmin, metalloprotease-9 (MMP-9) and hb-EGF. These events are required to activate the EGFR signalling pathway and cell proliferation.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Fibrinolíticos/farmacologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrinolisina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteases/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transcrição Gênica/genética
18.
Proteins ; 67(3): 606-16, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17330937

RESUMO

A new implicit solvent model for computing the electrostatics binding free energy in protein-ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490-6498). In essence, it relies on two basic assumptions; (i) solvent screening can be accounted for by means of radially dependent sigmoidal dielectric functions and; (ii) the effective atom Born radii can be expressed only as a function of the exposed atom surface. Parameters of the model other than radii and charges are generic. These were optimized for a dataset of 826 protein-ligand complexes, comprising both X-ray complexes for 23 receptors as well as decoys generated by docking computations. We show that the new model provides satisfactory results when benchmarked against reference values based on the numerical solution of the Poisson equation, with a root mean square error of 4.2 kcal/mol over a range of approximately 40 kcal/mol in electrostatics binding free energies, a cross-validated r2 of 0.81, a slope of 0.97, and an intercept of 1.06 kcal/mol. We show that the model is appropriate for ligands of different sizes, polarities, overall charge, and chemical composition. Furthermore, not only the total value of the electrostatic contribution to the binding free energy, but also its components (coulombic term, receptor desolvation, and ligand desolvation) are reasonably well reproduced. Computation times of approximately 0.030 s per pose are obtained on a single processor desktop workstation.


Assuntos
Ligantes , Proteínas/química , Solventes/química , Biologia Computacional , Simulação por Computador , Modelos Teóricos , Ligação Proteica , Eletricidade Estática , Termodinâmica
19.
J Med Chem ; 49(21): 6241-53, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17034130

RESUMO

Comparative binding energy analysis, a technique to derive receptor-based three-dimensional quantitative structure-activity relationships (3D-QSAR), is herein extended to consider both affinity and selectivity in the derivation of the QSAR model. The extension is based on allowing multiple structurally related receptors to enter the X-matrix employed in the derivation of the structure-activity model. As a result, a single model common to all of them is obtained that considers both intra- and inter-receptor affinity differences for a given congeneric series. We applied the technique to a series of 88 3-amidinophenylalanines, binding to thrombin, trypsin, and factor Xa (fXa). A single predictive regression model for the three receptors involving 202 complexes, with a leave-one out (LOO) cross-validated Q(2) of 0.689, was obtained, and selectivity requirements were investigated. We find that total or partial occupancy of any of the three main pockets in the binding site (D-site, P-site, and the rim of the S1-site) leads to higher affinity across the family. However, the fact that thrombin can make stronger interactions in the P-site, as a result of its exclusive 60-loop, makes of this site a specificity pocket for this thrombin. Occupancy of the D-site leads to more active inhibitors toward fXa for the same reason, but the model does not highlight strongly the D-box because inhibitors are too short to fully occupy it. Negative charge density in the neighborhood of position 88 (a Lys insertion in thrombin) is found to be a determinant for thrombin recognition. These results were consistent with previous studies on selectivity in the thrombin/trypsin/fXa system.


Assuntos
Fator Xa/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Relação Quantitativa Estrutura-Atividade , Inibidores de Serina Proteinase/química , Trombina/química , Tripsina/química , Sequência de Aminoácidos , Benzenossulfonatos/química , Sítios de Ligação , Inibidores do Fator Xa , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Naftalenossulfonatos/química , Ligação Proteica , Análise de Regressão , Eletricidade Estática , Termodinâmica , Trombina/antagonistas & inibidores
20.
BMC Genomics ; 7: 117, 2006 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-16709242

RESUMO

BACKGROUND: The evolution of viral quasispecies can influence viral pathogenesis and the response to antiviral treatments. Mutant clouds in infected organisms represent the first stage in the genetic and antigenic diversification of RNA viruses, such as foot and mouth disease virus (FMDV), an important animal pathogen. Antigenic variants of FMDV have been classically diagnosed by immunological or RT-PCR-based methods. DNA microarrays are becoming increasingly useful for the analysis of gene expression and single nucleotide polymorphisms (SNPs). Recently, a FMDV microarray was described to detect simultaneously the seven FMDV serotypes. These results encourage the development of new oligonucleotide microarrays to probe the fine genetic and antigenic composition of FMDV for diagnosis, vaccine design, and to gain insight into the molecular epidemiology of this pathogen. RESULTS: A FMDV microarray was designed and optimized to detect SNPs at a major antigenic site of the virus. A screening of point mutants of the genomic region encoding antigenic site A of FMDV C-S8c1 was achieved. The hybridization pattern of a mutant includes specific positive and negative signals as well as crosshybridization signals, which are of different intensity depending on the thermodynamic stability of each probe-target pair. Moreover, an array bioinformatic classification method was developed to evaluate the hybridization signals. This statistical analysis shows that the procedure allows a very accurate classification per variant genome. CONCLUSION: A specific approach based on a microarray platform aimed at distinguishing point mutants within an important determinant of antigenicity and host cell tropism, namely the G-H loop of capsid protein VP1, was developed. The procedure is of general applicability as a test for specificity and discriminatory power of microarray-based diagnostic procedures using multiple oligonucleotide probes.


Assuntos
Variação Antigênica/genética , Antígenos Virais/genética , Vírus da Febre Aftosa/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , RNA Viral/genética , Animais , Linhagem Celular/virologia , Biologia Computacional , Cricetinae , Vírus da Febre Aftosa/genética , Genes Virais , Rim , Controle de Qualidade , Sensibilidade e Especificidade , Cultura de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...